Wednesday, October 27, 2010

A Gandhian Approach to R&D
Scientist and scholar Raghunath Mashelkar explains a new model of innovation from India that benefits the world’s poor.
by Abhishek Malhotra, Art Kleiner, and Laura W. Geller

This article describes an approach for innovation that focuses on the ~4 billion poor in the world.

"When it comes to India’s future, Raghunath Mashelkar admits he’s an optimist. Although millions of Indians are still living below the poverty line and many will continue to do so for decades to come, Mashelkar, an accomplished polymer scientist who has held a wide variety of leadership positions at prominent research and scientific institutions, believes that India has the raw materials — the talent and drive — to overcome its challenges and become a nation of innovators.
These advances, Mashelkar argues, should be developed to help the poor at a price they can afford; not just in India, but in emerging nations around the world. He calls this concept Gandhian engineering, citing examples such as the Tata Nano, the cheapest car in the world at a cost of about US$2,200; a hepatitis B vaccine that is 1/40th the cost of traditional vaccines but meets UNICEF’s quality requirements; and Aravind Eye Care’s cataract surgeries, performed on 300,000 patients annually, which cost 1/100th the fee charged in other countries but meet global quality standards...
...It’s a term (Gandian) I coined for getting more from less for more people, a new way of expressing one of Gandhi’s teachings: “Earth provides enough to satisfy every man’s need, but not every man’s greed.” In other words, Gandhian engineering is inclusive innovation: developing products and services that improve life for everyone, innovation that doesn’t leave out the poor...
...(Another example)For the millions of people along India’s coastline who depend on fishing for their livelihood, a new system of satellite-based potential fishing zone (PFZ) forecasting has raised productivity levels and thus incomes. Before this technology was accessible, fishermen often returned home in the evening without any catch. Today, scientists can see the chlorophyll — the green coloration of water created by the activity of the fish — and can also measure the sea surface temperature, which changes due to the activity of the fish. The PFZ information is disseminated to the fishermen in two ways: first, through electronic message boards, where the information is posted. Second, some service providers are supplied with the information, which they then send by SMS text messages to the fishermen’s mobile phones, which can be purchased very inexpensively in India today. When the fisherman goes to these regions where the fish density is higher, his income level will rise. And, also significant, when he used to come back after catching the fish, the fisherman’s catch might rot because he wouldn’t be able to secure buyers quickly enough. Today, using his mobile phone even before he comes ashore, he has fixed where he’s going to sell.
So all of this technology is being developed and used to enhance prosperity, both for the provider of the low-cost product (in this case, for example, Bharti Airtel, one of Asia’s largest telecom service providers) and also for the user (in this case, the fisherman). Technology is going to be a game changer. If you provide people with high innovation at low cost, they will become more productive and efficient, and their earning potential will increase. We can keep improving lives in India and around the world just by making this technology affordable and accessible."

No comments: